

03. Find the value of k if the function

$$f(x) = \frac{\tan 7x}{2x} ; x \neq 0$$
$$= k ; x = 0 \quad \text{is continuous at } x = 0$$

SOLUTION

Step 1

 $\lim_{x \to 0} f(x)$

- $= \lim_{x \to 0} \frac{\tan 7x}{2x}$
- $= \lim_{x \to 0} \frac{7}{2} \frac{\tan 7x}{7x}$ $= \frac{7}{2}(1)$
- Step 2 :

=

f(0) = k given

<u>7</u> 2

Step 3 :

Since f is continuous at x = 0

 $f(0) = \lim_{x \to 0} f(x)$

k = 7/2

04. Write negations of the following statements

```
1. \forall y \in N, y^2 + 3 \le 7
```

Negation : $\exists y \in N$, such that $y^2 + 3 > 7$

2. if the lines are parallel then their slopes are equal

Using	:	$\sim (P \rightarrow Q) \equiv P \land \sim Q$
Negation	:	lines are parallel and their slopes are not equal

05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75 SOLUTION

Rm		$R_A \left(\begin{array}{c} 1 & - \\ & \eta \end{array} \right)$		
50	=	75 $\begin{pmatrix} 1 - \underline{1} \\ \eta \end{pmatrix}$		
<u>50</u> 75	=	1 - <u>1</u> η		
<u>2</u> 3	=	1 - <u>1</u> η		
<u>1</u> η		$1 - \frac{2}{3}$		
<u>1</u> η	=	<u>1</u> 3	η	=

06. State which of the following sentences are statements . In case of statement , write down the truth value

3

a) Every quadratic equation has only real roots

ans : the given sentence is a logical statement . Truth value : F

b) $\sqrt{-4}$ is a rational number

ans : the given sentence is a logical statement . Truth value : F

07. Evaluate :
$$\int \frac{\sec^2 x}{\tan^2 x + 4} dx$$
SOLUTION PUT tan x = t
sec²x . dx = dt
THE SUM IS
$$= \int \frac{1}{t^2 + 4} dt$$
$$= \int \frac{1}{t^2 + 2^2} dt$$
$$= \frac{1}{a} \tan^{-1} \frac{1}{a} + c$$
$$= \frac{1}{2} \tan^{-1} \frac{1}{2} + c$$
Resubs.
$$= \frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2}\right) + c$$

98. if
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then find $|AB|$
SOLUTION
 $AB = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 $= \begin{pmatrix} 1 + 3 & 2 + 4 \\ 2 + 6 & 4 + 8 \end{pmatrix}$
 $= \begin{pmatrix} 4 & 6 \\ 8 & 12 \end{pmatrix}$
 $|AB| = 4(12) - 8(6) = 48 - 48 = 0$
32. (A)Attempt any TWO of the following
01. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
31. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
31. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{9 - (2x + 7)}{x - 1}$
 $= \lim_{x \to 1} \frac{9 - (2x - 7)}{x - 1}$
 $= \lim_{x \to 1} \frac{2 - 2x}{x - 1}$
 $= \lim_{x \to 1} \frac{2 - 2x}{x - 1}$
 $= \lim_{x \to 1} \frac{2(1 - x)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(1 - x)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \frac{-2}{3 + \sqrt{2x + 7}}$

(

(06)

$$= \frac{-2}{3+3}$$

$$= \frac{1}{3}$$
STEP 2:

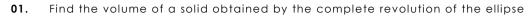
$$(11) = -1/3 \quad \dots \quad \text{given}$$
STEP 3:

$$(11) = -1/3 \quad \dots \quad \text{given}$$
STEP 3:

$$(11) = \lim_{x \to 1} f(x) \quad ; f \text{ is continuous at } x = 1$$
22. Write the converse , inverse and the contrapositive of the statement
"The crops will be destroyed if there is a flood "
SOLUTION :
LET $P \rightarrow Q = \text{ if there is a flood then the crops will be destroyed}$
CONVERSE $: Q \rightarrow P$
If the crops will be destroyed then there will be a flood
CONTRAPOSITIVE : $\sim Q \rightarrow \sim P$
If the crops will not be destroyed then there will be no flood
INVERSE $: \sim P \rightarrow \sim Q$
If there is no flood then the crops will not be destroyed
O3. Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{6x}{1-5x^2}\right)$
SOLUTION
 $y = \tan^{-1} 5x + \tan^{-1} x$
 $\frac{dy}{dx} = \frac{1}{1+25x^2} \frac{d}{dx} (5x) + \frac{1}{1+x^2}$
 $\frac{dy}{dx} = \frac{5}{1+25x^2} \frac{1}{1+x^2}$

(B) Attempt any TWO of the following

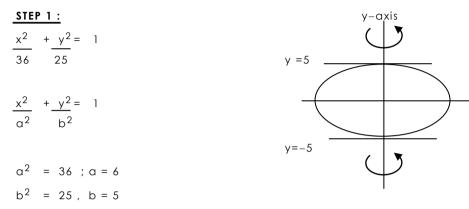
(08)



$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

about Y – axis

SOLUTION



STEP 2 :

$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

$$\frac{x^2}{36} = 1 - \frac{y^2}{25}$$

$$\frac{x^2}{36} = \frac{25 - y^2}{25}$$

$$x^2 = \frac{36}{25}(25 - y^2)$$

STEP 3:

$$V = \pi \int_{-5}^{5} x^{2} dy$$
About y - axis

$$= \pi \int_{-5}^{5} \frac{36}{25} (25 - y^{2}) dy$$

$$= \frac{36\pi}{25} \int_{-5}^{5} (25 - y^{2}) dy$$

03. If Mr. Rao orders x cupboards , with demand function as

$$p = 2x + \frac{32}{x^2} - \frac{5}{x}$$

How many cupboards should he order for the most economical deal **solution**

STEP 1: COST

$$C = p.x$$

$$= \left(2x + \frac{32}{x^2} - \frac{5}{x}\right) \cdot x$$

$$= 2x^2 + \frac{32}{x} - 5$$

STEP 2 :

$$\frac{dC}{dx} = 4x - \frac{32}{x^2} = 4x - 32x^{-2}$$
$$\frac{d^2C}{dx^2} = 4 + 64x^{-3}$$
$$= 4 + \frac{64}{x^3}.$$

STEP 3 :

$$\frac{dC}{dx} = 0$$

$$4x - \frac{32}{x^2} = 0$$

$$4x = \frac{32}{x^2}$$

$$4x^3 = 32$$

$$x^3 = 8 \quad \therefore x = 2$$

STEP 4 :

$$\frac{d^2C}{dx^2} \begin{vmatrix} & = & 4 + \frac{64}{2^3} \\ x & = & 2 \\ \end{vmatrix} > 0$$

Cost is minimum at x = 2

Mr. Rao must order 2 cupboards

Q3. (A)Attempt any TWO of the following

$$p \land ((\land p \lor q) \lor \land q) \equiv p$$

Solution $p \land ((\sim p \lor q) \lor \sim q)$ = $p \land (\sim p \lor (q \lor \sim q))$= $p \land (\sim p \lor t)$= $p \land t$= $p \land t$Identity Law

02.
$$f(x) = \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)}$$
; $x \neq 0$
= 10; $x = 0$ Discuss the continuity at $x = 0$

Solution :

Step 1

 $\lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)}$$

Dividing Numerator & Denominator by x^2 $x \rightarrow 0$, $x \neq 0$, $x^2 \neq 0$

= Lim

$$x \rightarrow 0$$

$$\frac{\frac{(e^{3x} - 1)^2}{x^2}}{\frac{x \cdot \log(1 + 3x)}{x^2}}$$

= Lim

$$x \rightarrow 0$$
 $\frac{\left(\frac{e^{3x}-1}{x}\right)^2}{\frac{\log(1+3x)}{x}}$

$$= \lim_{\substack{x \to 0 \\ x \to 0}} \frac{\left(3 \frac{e^{3x} - 1}{3x}\right)^2}{\log(1 + 3x)}$$

(06)

$$= \lim_{x \to 0} \frac{\begin{pmatrix} 3 & e^{3x} - 1 \\ 3x \end{pmatrix}^2}{\log \begin{pmatrix} 1 & 3x \\ 1 + 3x \end{pmatrix}^3}$$
$$= \frac{(3 \log e)^2}{\log e^3}$$
$$= \frac{9}{3 \log e} = 3$$
Step 2 :

f(0) = 10 given

Step 3 :

$$f(0) \neq \lim_{x \to 0} f(x)$$

 $\therefore f$ is discontinuous at x = 0

Step 4 :

Removable Discontinuity

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)} ; x \neq 0$$
$$= 3 ; x = 0$$

if $\sin y = x.\sin(5 + y)$;	prove that $\frac{dy}{dx} = \frac{\sin^2(5+y)}{\sin^2 x}$
SOLUTION		
sin y	=	x.sin(5 + y)
х	=	sin y sin (5 + y)
Diffe	ren	tiating wrt y
dx dy	=	sin (5 + y) <u>d</u> sin y – sin y <u>d</u> sin (5 + y) <u>dy</u> <u>dy</u> sin ² (5 + y)
		sin ² (5 + y)
dx dy	=	$sin (5 + y) . cos y - sin y . cos (5 + y) \frac{d}{dy} (5 + y)$ $sin^2 (5 + y)$
		sin ² (5 + y)
dx dy	= .	sin (5 + y).cos y - cos (5 + y) . sin y sin ² (5 + y)
dx dy	=	$\frac{\sin (5 + y - y)}{\sin^2(5 + y)}$
dx dy	=	sin 5 sin ² (5 + y)
Now dy dx		l dx dy
∴ <u>dy</u> dx	=	$\frac{\sin^2(5+y)}{\sin 5}$

03.

$$\mathbf{01.} \qquad \int_{4}^{7} \frac{(11-x)^2}{x^2 + (11-x)^2} dx \qquad \dots \qquad (1)$$

$$u_{SING} \int_{0}^{b} f(x) dx = \int_{b}^{b} f(\alpha + b - x) dx$$

$$I = \int_{4}^{7} \frac{(11-(4+7-x))^2}{(4+7-x)^2 + (11-(4+7-x))^2} dx$$

$$I = \int_{4}^{7} \frac{(11-(11-x))^2 dx}{(11-x)^2 + (11-(11-x))^2}$$

$$I = \int_{4}^{7} \frac{(11-x)^2 + (11-11+x)^2}{(11-x)^2 + (x^2} dx \qquad \dots \qquad (2)$$

$$(1) + (2)$$

$$2I = \int_{4}^{7} \frac{(11-x)^2 + x^2}{(11-x)^2 + x^2} dx$$

$$2I = \int_{4}^{7} \frac{1}{1} dx$$

$$2I = \int_{4}^{7} 1 dx$$

$$2I = (x) \int_{4}^{7}$$

$$2I = 3$$

$$I = 3/2$$

(08)

$$\begin{array}{l} \textbf{02.} \qquad \int \frac{x^2}{x^4 + 5x^2 + 6} & dx \\ \qquad \qquad \int \frac{x^2}{(x^2 + 2)(x^2 + 3)} & dx \\ \textbf{SOUTION} \\ & \frac{x^2}{(x^2 + 2)(x^2 + 3)} & = \frac{A}{x^2 + 2} & \pm \frac{B}{x^2 + 3} \\ & \frac{x^2 = t}{(x^2 + 2)(x^2 + 3)} & = \frac{A}{x^2 + 2} & \pm \frac{B}{x^2 + 3} \\ & \frac{x^2 = t}{(t + 2)(t + 3)} & = \frac{A}{t + 2} & \pm \frac{B}{t + 3} \\ & \frac{t}{t} & = A(t + 3) + B(t + 2) \\ \textbf{Put } \textbf{t} = -3 \\ & -3 & = B(-3 + 2) \\ & -3 & = B(-1) & \therefore B = 3 \\ \textbf{Put } \textbf{t} = -2 \\ & -2 & = A(-2 + 3) \\ & -2 & = A(1) & \therefore A = -2 \\ \hline \textbf{THEREFORE} \\ & \frac{1}{(t + 2)(t + 3)} & = \frac{-2}{t + 2} & \pm \frac{3}{t + 3} \\ \hline \textbf{HENCE} \\ & \frac{x^2}{(x^2 + 2)(x^2 + 3)} & = \frac{2}{x^2 + 2} & \pm \frac{3}{x^2 + 3} \\ \hline \textbf{BACK IN THE SUM} \\ & = \int \frac{-2}{x^2 + 2} + \frac{3}{x^2 + 3} & dx \\ & = \int \frac{-2}{x^2 + \sqrt{2}} + \frac{3}{x^2 + 3} & dx \\ & = \int \frac{-2}{x^2 + \sqrt{2}} + \frac{3}{x^2 + \sqrt{3}} & dx \\ & = \int \frac{-2}{\sqrt{2}} \tan^{-1}\left[\frac{x}{\sqrt{2}}\right] + 3 & \frac{1}{\sqrt{3}}\tan^{-1}\left[\frac{x}{\sqrt{3}}\right] + c \\ & = -\sqrt{2} \tan^{-1}\left[\frac{x}{\sqrt{2}}\right] & + \sqrt{3} \tan^{-1}\left[\frac{x}{\sqrt{3}}\right] + c \end{array}$$

A = $\begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ Verify : A.(adj A) = (adj A).A = |A|.I 03. COFACTOR'S $A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} = 1(0-0) = 0$ A12 = $(-1)^{1+2}$ $\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix}$ = -1(9+2) = -11 $A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 1(0-0) = 0$ $A_{21} = (-1)^{2+1} \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = -1(-3 - 0) = 3$ $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1(3-2) = 1$ $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = -1(0+1) = -1$ $A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 1(2-0) = 2$ $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = -1(-2-6) = 8$ $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1(0+3) = 3$ COFACTOR MATRIX OF A

ADJ A = TRANSPOSE OF THE COFACTOR MATRIX $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ | **A** | = 1(0+0) + 1(9+2) + 2(0-0)= 11 LHS 1 = A.(adj A) $= \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ LHS 2 = (adj A). A $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ RHS = |A|.I $11 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ HENCE A.(adj A) = (adj A).A = |A|.I

Q4. (A)Attempt any six of the following

SECTION - II

01. Find correlation coefficient between x and y for the following data

n = 100, $\overline{x} = 62$, $\overline{y} = 53$, $\sigma x = 10$, $\sigma y = 12$, $\Sigma(x - \overline{x})(y - \overline{y}) = 8000$ SOLUTION r = $\frac{\cos(x, y)}{\sigma x \cdot \sigma y}$ = $\frac{\sum(x - \overline{x})(y - \overline{y})}{n}$ $\sigma x \cdot \sigma y$

$$= \frac{8000}{10.12}$$
$$= \frac{80}{10.12}$$
$$= \frac{2}{3}$$

02. a building is insured for 80% of its value. The annual premium at 70 paise percent amounts to ₹
2,800. Fire damaged the building to the extent of 60% of its value. How much amount for damage can be claimed under the policy

SOLUTION

Property value = ₹x Insured value = $\frac{80x}{100}$ = $\frac{4x}{5}$ Rate of premium = 70 paise percent = 0.70% = ₹2800 Premium $= 0.70 \times 4x$ 100 5 2800 $= \frac{7}{1000} \times \frac{4x}{5}$ 2800 2800 = <u>28x</u> 5000 $= 100 \times 5000$ Х = 5,00,000 Х Property value = ₹ 5,00,000

(12)

Loss	=	<u>60</u> x 5,00,000 100
	=	₹ 3,00,000
Claim		= 80% of loss
	=	80 × 3,00,000
	=	₹ 2,40,000

03. The coefficient of rank correlation for a certain group of data is 0.5. If $\Sigma d^2 = 42$, assuming no ranks are repeated; find the no. of pairs of observation

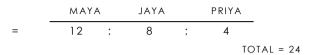
SOLUTION

 $R = 0.5 ; \Sigma d^{2} = 42$ $R = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ $0.5 = 1 - \frac{6(42)}{n(n^{2} - 1)}$ $\frac{6(42)}{n(n^{2} - 1)} = 1 - 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = \frac{1}{2}$ $n(n^{2} - 1) = 6 \times 42 \times 2$ $n(n^{2} - 1) = 3 \times 2 \times 3 \times 2 \times 7 \times 2$ $(n - 1).n.(n + 1) = 7 \times 8 \times 9$ On comparing , n = 8

04. Maya and Jaya started a business by investing equal amount. After 8 months Jaya withdrew her amount and Priya entered the business with same amount of capital. At the end of the year there was a profit of ₹ 13,200. Find their share of profit

SOLUTION

<u>STEP 1 :</u> Profits will be shared in the 'RATIO OF PERIOD OF INVESTMENT'



<u>STEP 2 :</u>

PROFIT = ₹ 13,200

Maya's share of profit = $\frac{12}{24} \times \frac{13,200}{24} = ₹ 6,600$ Jaya's share of profit = $\frac{8}{24} \times \frac{13,200}{2} = ₹ 4,400$ Priya's share of profit = $\frac{4}{24} \times \frac{13,200}{2} = ₹ 2,200$

05. Calculate CDR for district A and B and compare

Age	DISTRIC	CT A	DISTRIC	СТ В
Group	NO. OF	NO. OF	NO. OF	NO. OF
(Years)	PERSONS	DEATHS	PERSONS	DEATHS
	Р	D	Р	D
0 - 10	1000	18	3000	70
10 - 55	3000	32	7000	50
Above 55	2000	41	1000	24
	ΣP = 6000	ΣD = 91	ΣP = 11000	ΣD = 144
CDR(A	$A) = \frac{\Sigma D}{\Sigma P} X$	CDR(B) =	<u>Σ D</u> x 1000 Σ P	
	$= \frac{91 \text{ x}}{6000}$	=	<u>144</u> x 100 11000	
	= 15.17	=	13.09	

COMMENT : CDR(B) < CDR(A) . HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A

06. the probability of defective bolts in a workshop is 40%. Find the mean and variance of defective bolts out os 10 bolts

```
SOLUTION n = 10,

r,v,x = no of defective bolts

p = probability of defective bolt = 40 = 2

100 5

q = 1-p = 3

5

X ~ B(10,2/5)

Mean = np = 10 x 2 = 5

Variance = npq = 10 x 2 x 3 = 2.4
```

07. The ratio of incomes of Salim & Javed was 20:11. Three years later income of Salim has increased by 20% and income of Javed was increased by ₹ 500. Now the ratio of their incomes become 3 : 2. Find original incomes of Salim and Javed

SOLUTION

Let income of Salim = 20x Income of Javed = 11x

As per the given condition

20x + <u>20</u> (20x) 100 11x + 500	$=$ $\frac{3}{2}$
$\frac{20x + 4x}{11x + 500}$	$=$ $\frac{3}{2}$
$\frac{24x}{11x + 500}$	$=$ $\frac{3}{2}$
48x	= 33x + 1500
x =	100
.:.	
Salim's original income	= 20(100) = ₹ 2000
Javed's original income	= 11(100) = ₹1100

08. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is ₹ 10,000. What is the accumulated value after 3 years (1.1³ = 1.331)

SOLUTION	A	$= P(1 + i)^{n}$
	=	$10000(1 + 0.1)^3$
	=	10000(1.1) ³
	=	10000(1.331)
	=	₹ 13,310

Q5. (A)Attempt any Two of the following (06) a new treatment for baldness is known to be effective in 70% of the cases treated . Four bald 01. members from different families are treated . Find the probability that (i) at least one member is successfully treated (ii) exactly 2 members are successfully treated SOLUTION 4 bald members from different families are treated , n = 4For a trial Success - a defective pen p - probability of success = 70/100 = 7/10q - probability of failure = 1 - 7/10 = 3/10 $X \sim B(4, 7/10)$ r.v. X - no of successes = 0, 1, 2, 3, 4a) P(at least one member is successfully treated) $= P(X \ge 1)$ = $P(1) + P(2) + \dots + P(4)$ = 1 - P(0)= $1 - {}^{4}C_{0} \cdot p^{0} \cdot q^{4}$ $= 1 - {}^{4}C_{0} \left(\frac{7}{10}\right)^{0} \left(\frac{3}{10}\right)^{4}$ = 1 - 1.1.81= 1 - 0.0081 = 0.9919b) P(exactly 2 members are successfully treated) = P(X = 2) $= {}^{4}C_{2} \cdot p^{2} \cdot q^{2}$ $= {}^{4}C_{2}\left(\frac{7}{10}\right)^{2}\left(\frac{3}{10}\right)^{2}$ $= \frac{6.49.9}{10^4}$

$$= 2646 = 0.2646$$

02. Compute rank correlation coefficient for the following data

Rx :	1	2	3	4	5	6
Ry :	6	3	2	1	4	5

SOLUTION

х	У	d = x - y	d ²	$R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)^2}$
1	6	5	25	
2	3	1	1	$= 1 - \frac{6(38)}{6(36 - 1)}$
3	2	1	1	$= 1 - \frac{38}{35}$
4	1	3	9	
5	4	1	1	$= -\frac{3}{35}$
6	5	1	1	= -0.086
			$\Sigma d^2 = 38$	

03. the income of the agent remains unchanged though the rate of commission is increased from 5% to 6.25%. Find the percentage reduction in the value of the business

SOLUTION

Let initial sales	=	₹ 100
Rate of commission	=	5%
Commission	=	₹ 5
Let the new sales	=	₹x
Let the new sales Rate of commission		₹ x 6.25%

Since the income of the broker remains unchanged

$$\frac{6.25}{100} \times = 5$$

$$x = \frac{5 \times 100 \times 100}{625}$$

$$x = 80$$

$$\therefore \text{ new sales} = ₹ 80$$

Hence percentage reduction in the value of the business = 20%

(B) Attempt any Two of the following

01. A warehouse valued at ₹ 10,000 contained goods worth ₹ 60,000. The warehouse was insured against fire for ₹ 4,000 and the goods to the extent of 90% of their value. A fire broke out and goods worth ₹ 20,000 were completely destroyed, while the remainder was damaged and reduced to 80% of its value. The damage to the warehouse was to the extent of ₹ 2,000. Find the total amount that can be claimed SOLUTION :

WAREHOUSE

Property value	=	₹ 10,000
Insured value	=	₹ 4,000
Loss	=	₹ 2,000
Claim	=	insured valx loss Property val.
	=	<u>4,000</u> x 2,000 10,000
	=	₹ 800

STOCK IN WAREHOUSE

Value of stock	=	₹ 60,000
Insured value	=	90% of the stock
Loss		

Note : Since the remainder was reduced to 80% of its value the loss on it is 20%

- $= 20,000 + \underline{20}(60,000 20,000)$
- $= 20,000 + \frac{20}{100}(40,000)$
- = 20,000 + 8,000
- = ₹ 28,000

Since 90% of the stock was insured

Claim	=	90% of loss
	=	<u>90</u> x 28,000 100
	=	₹ 25,200
Hence		
Total claim	=	800 + 25,200
	=	₹ 26,000

 02.
 X
 :
 6
 2
 10
 4
 8

 Y
 :
 9
 11
 ?
 8
 7

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient **SOLUTION**:

$$y = \sum y$$
 8 = $9 + 11 + b + 8 + 7$
n 5

$$40 = 35 + b$$
 $b = 5$

	1			1	1	1	
x	У	x-x	y-y	$(x - \overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x})(y - \overline{y})$	
6	9	0	1	0	1	0	
2	11	-4	3	16	9	-12	
10	5	4	-3	16	9	-12	
4	8	-2	0	4	0	0	
8	7	2	-1	4	1	-2	
30	40	0	0	40	20	-26	
Σx	Σy	$\Sigma(x-\overline{x})$	$\Sigma(y-\overline{y})$	$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$	
$\overline{x} = 6 \overline{y} = 8$							

$$r = \frac{\Sigma (x - \overline{x}) \cdot (y - \overline{y})}{\sqrt{\Sigma (x - \overline{x})^2} \sqrt{\Sigma (y - \overline{y})^2}}.$$

$$r = \frac{-26}{\sqrt{40 \times \sqrt{20}}}$$
$$r = \frac{-26}{\sqrt{40 \times 20}}$$
$$r' = 26$$

taking log on both sides

 $\log r' = \log 26 - \frac{1}{2} \left[\log 40 + \log 20 \right]$ $\log r' = 1.4150 - \frac{1}{2} \left[1.6021 + 1.3010 \right]$ $\log r' = 1.4150 - \frac{1}{2} \left(2.9031 \right)$ $\log r' = 1.4150 - 1.4516$ $\log r' = 1.9634$ $r' = AL(\overline{1}.9634) = 0.9191$ r = -0.9191 **03.** a bill of ₹ 7,500 was discounted for ₹ 7290 at a bank on 28th October 2006 . If the rate of interest was 14% p.a. , what is the legal due date

SOLUTION

SOLUTION	
	@ 14% p.a.
	d days
	5 th Jan 28 th Oct ─── ?
	₹7,290 ₹7,500
	STEP 1:
	Let Unexpired period = d days
	STEP 2 :
	B.D. = F.V C.V.
	= 7,500 - 7,290
	= ₹210
	STEP 3 :
	B.D. = Interest on F.V. for 'd' days @ 14% p.a.
	15
	210 = 7500 x d x 14
	-365 -100
	73
	$d = 210 \times 73$ 15 × 14
	10 / 14
	d = 73 days
	STEP 4:
	Legal Due date
	= 28 th Oct + 73 days
	OCT NOV DEC JAN = 3 + 30 + 31 + 9
	= 3 + 30 + 31 + 9

= 9th January 2007

Q6. (A) Attempt any Two of the following

01. The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive at most two complaints on any given day ($e^{-4} = 0.0183$)

SOLUTION

m = average number of complaints a bank manager receives per day = 4 r.v X ~ P(4)

P(at most two complaints on any given day)

 $= P(x \le 2)$ = P(0) + P(1) + P(2) $= \frac{e^{-4} \cdot 4^{0}}{0!} + \frac{e^{-4} \cdot 4^{1}}{1!} + \frac{e^{-4} \cdot 4^{2}}{2!} \quad \text{Using} \quad P(x) = \frac{e^{-m} \cdot m^{x}}{x!}$ $= e^{-4} \cdot \left(\frac{1}{1} + \frac{4}{1} + \frac{16}{2}\right)$ = 0.0183 (1 + 4 + 8) = 0.0183 (13)

02. Suppose X is a random variable with pdf

$$f(x) = \frac{c}{x} \quad ; \quad 1 < x < 3 \; ; \quad c > 0$$
Find $c \& E(X)$

$$i) \qquad \int_{1}^{3} \frac{c}{x} \qquad dx = 1$$

$$c \int_{1}^{3} \frac{1}{x} \qquad dx = 1$$

$$c \left(\log x\right)_{1}^{3} = 1$$

$$c \left(\log 3 - \log 1\right) = 1$$

$$c \left(\log 3 = 1\right)$$

$$c = \frac{1}{\log 3}$$
Hence X is a r.v. with pdf

$$f(x) = \frac{1}{x \log 3}$$
; $1 < x < 3$

ii)
$$E(x) = \int_{1}^{3} x f(x) dx$$

$$= \int_{1}^{3} x \frac{1}{x \log 3} dx$$

$$= \int_{1}^{3} \frac{1}{\log 3} dx$$

$$= \left(\frac{x}{\log 3}\right)^{3}$$

$$= \left(\frac{3}{\log 3}\right) - \left(\frac{1}{\log 3}\right) =$$

 $\frac{2}{\log 3}$

03. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order A - B. Determine the sequence for performing the jobs that would minimize the total elapsed time T . Find T and the idle time on the two machines Job J2 Jl JЗ J4 J5 J6 3 3 8 5 6 MA 1 5 6 3 2 2 10 Μв Step 1 : Finding the optimal sequence Min time = 1 on job J1 on machine M1. Place the job at the start of the sequence J1 Next min time= 2 on jobs J4 & J5 on machine MB. Place the jobs at the end of the sequence randomly Jı J4 J5 **Placed Randomly** Next min time = 3 on jobs $J_2 \& J_6$ on machine M_A and on job J_3 on machine Μв respectively. Place J2 & J6 at the start next to J1 randomly and J3 at the end next to J4 J1 JЗ J4 J 5 J2 J۵ **Placed Randomly OPTIMAL SEQUENCE** J1 J2 J۵ J3 J4 J 5 Step 2 : Work table According to the optimal sequence Job J1 J2 J۵ J3 J4 J5 total process time 3 3 Ma 1 8 5 6 26 hrs = 10 3 2 2 28 hrs Μв 5 6 = WORK TABLE Page 27 of 32

	N	A	M	3	Idle time
JOBS	IN	OUT	IN OUT		on M _B
Jı	0	1	1	6	1
J ₂	1	4	6	12	
۶L	4	7	12	22	
J3	7	15	22	25	
J4	15	20	25	27	
J5	20	26	27	29	

Step 3 :

Total elapsed time T = 29 hrs

Idle time on MA = T - $\left(sum \text{ of processing time of all 6 jobs on M1}\right)$ = 29 - 26 = 3 hrs

Idle time on M_B = T - (sum of processing time of all 6 jobs on M2) = 29 - 28 = 1 hr

Step 4 : All possible optimal sequences :

$$J_{1} - J_{2} - J_{6} - J_{3} - J_{4} - J_{5}$$

$$OR$$

$$J_{1} - J_{6} - J_{2} - J_{3} - J_{4} - J_{5}$$

$$OR$$

$$J_{1} - J_{2} - J_{6} - J_{3} - J_{5} - J_{4}$$

$$OR$$

$$J_{1} - J_{6} - J_{2} - J_{3} - J_{5} - J_{4}$$

01. a pharmaceutical company has four branches, one at each city A, B, C and D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depends upon the city and effectiveness of the branch manager in that city

			CI	TY		
		А	В	С	D	_
	Р	11	11	9	9	
BRANCH	Q	13	16	11	10	MONTHLY BUSINESS (IN LACS)
MANAGER	R	12	17	13	8	
	S	16	14	16	12	

Which manager should be appointed at which city so as to get maximum total monthly business .

6	6	8	8	Subtracting all the elements in the matrix from
4	1	6	7	its maximum
5	0	4	9	The matrix can now be solved for 'MINIMUM'
1	3	1	5	
0	0	2	2	Reducing the matrix using 'ROW MINIMUM'
3	0	5	6	
5	0	4	9	
0	2	0	4	
0	0	2	0	Reducing the matrix using 'COLUMN MINIMUM'
3	0	5	4	
5	0	4	7	
0	2	0	2	
0	×	2	×	 Allocation using 'single zero row-column method'
3	0	5	4	 Allocation incomplete (3rd row unassigned)
5	×	4	7	
×	2	0	2	
	÷			
0		2	×	 Drawing min. no. of lines to cover all '0's
√ 3	0	5	4	
√ 5	×	4	7	
······································		0	2	
	\checkmark			

0	3	2	0	Revise the matrix		
0	0	2	1	Reducing all the uncovered elements by its		
2	0	1	4	minimum and adding the same at the		
0	4	0	2	intersection		
) 0 2) X	3 XX 0 4	2 2 1 0	0 1 4 2	 Reallocation using 'SINGLE ZERO ROW-COLUMN METHOD' Since all rows contain an 'assigned zero' , the assignment problem is complete 		
Optimal Assignment : P – D; Q – A; R – B; S – C						

Maximum business = 9 + 13 + 17 + 16 = 55(lacs)

LOG CALC

4.1329

- 2.8704 AL 1.2625 18.30

02. Information on vehicles (in thousands) passing through seven different highways during a day (X) and number of accidents reported (Y) is given as

 $\Sigma x = 105 \ ; \ \ \Sigma y = 409 \qquad ; \ \ \Sigma x^2 = 1681 \qquad ; \ \ \Sigma y^2 = 39350 \ ; \ \ \Sigma xy = 8075 \quad .$

Obtain linear regression of Y on X

SOLUTION

$$\overline{x} = \underline{\Sigma x}$$
 = $\frac{105}{7}$ = 15
 $\overline{y} = \underline{\Sigma y}$ = $\frac{409}{7}$ = 58.43

byx =
$$\frac{n\Sigma xy - \Sigma x.\Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$

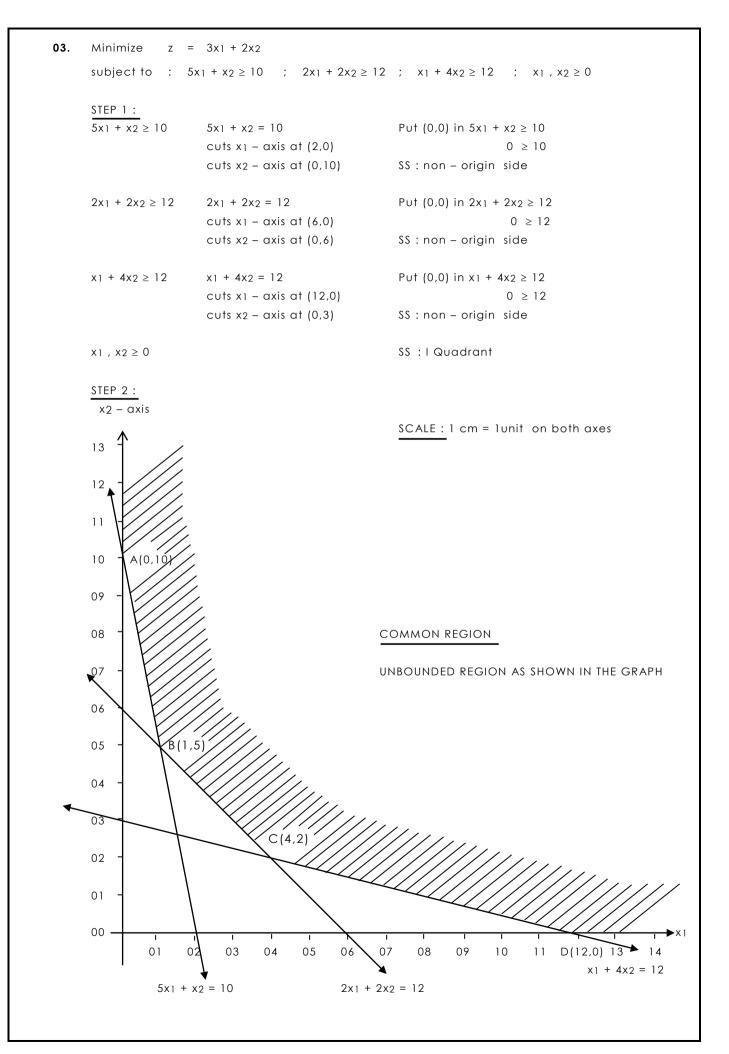
 $= \frac{7(8075) - (105)(409)}{7(1681) - (105)^2}$

$$= \frac{56525 - 42945}{11767 - 11025}$$

= 18.30

Equation

 $y - \overline{y} = byx (x - \overline{x})$ y - 58.43 = 18.30(x - 15) y - 58.43 = 18.30x - 274.5 y = 18.30x - 274.50 + 58.43y = 18.30x - 216.07



STEP 3 :		
CORNERS	$z = 3x_1 + 2x_2$	
A(0,10)	3(0) + 2(10) = 0 + 20	= 20
B(1,5)	3(1) + 2(5) = 3 + 10	= 13
C(4,2)	3(4) + 2(2) = 12 + 4	= 16
D(12,0)	3(12) + 2(0) = 36 + 0	= 36
OPTIMAL SOLUTIO	N : Zmin = 13 at (1,5)	